Divulga

Telescopios de ESO ayudan a descubrir el grupo más grande de planetas errantes detectados hasta la fecha

Los planetas errantes son esquivos objetos cósmicos con masas comparables a las de los planetas de nuestro Sistema Solar, pero que no orbitan una estrella, sino que deambulan libremente por su cuenta. Hasta ahora no se conocían muchos, pero utilizando datos de varios telescopios del Observatorio Europeo Austral (ESO) y de otras instalaciones, un equipo especializado en astronomía acaba de descubrir al menos 70 nuevos planetas errantes en nuestra galaxia. Es un paso importante hacia la comprensión de los orígenes y características de estos misteriosos nómadas galácticos, ya que se trata del grupo de planetas errantes más grande jamás descubierto.

“No sabíamos cuántos podríamos encontrar y estamos emocionados por haber detectado tantos”, afirma Núria Miret-Roig, astrónoma del Laboratorio de Astrofísica de Burdeos (Francia) y de la Universidad de Viena (Austria) y la primera autora del nuevo estudio publicado hoy en la revista Nature Astronomy.

Normalmente sería imposible obtener imágenes de planetas errantes, ya que se mueven lejos de cualquier estrella que pueda iluminarlos. Sin embargo, Miret-Roig y su equipo aprovecharon el hecho de que, en los pocos millones de años posteriores a su formación, estos planetas todavía están lo suficientemente calientes como para brillar, lo que los hace directamente detectables por cámaras sensibles instaladas en grandes telescopios. Encontraron al menos 70 nuevos planetas errantes con masas comparables a las de Júpiter en una región de formación estelar cerca de nuestro Sol, en las constelaciones de Escorpio Superior y Ofiuco [1].

Para detectar tantos planetas errantes, el equipo utilizó datos de varios telescopios terrestes y en el espacio que abarcan unos 20 años de observaciones. “Medimos los pequeños movimientos, los colores y las luminosidades de decenas de millones de fuentes en una gran área del cielo”,explica Miret-Roig.“Estas mediciones nos permitieron identificar de forma fiable los objetos más débiles de esta región, los planetas errantes”.

El equipo utilizó observaciones de los telescopios de ESO: VLT (Very Large Telescope), VISTA (Visible and Infrared Survey Telescope for Astronomy), VST (VLT Survey Telescope) y del Telescopio MPG/ESO de 2,2 metros, todos ubicados en Chile, junto con observaciones de otras instalaciones.“La gran mayoría de nuestros datos provienen de observatorios de ESO, que fueron absolutamente críticos para este estudio. Su amplio campo de visión y su sensibilidad única fueron claves para nuestro éxito”, explica Hervé Bouy, astrónomo del Laboratorio de Astrofísica de Burdeos (Francia) y líder de proyecto de esta nueva investigación. “Utilizamos decenas de miles de imágenes de amplio campo obtenidas con las instalaciones de ESO, correspondientes a cientos de horas de observaciones y literalmente decenas de terabytes de datos”.

El equipo también utilizó datos del satélite Gaia de la Agencia Espacial Europea, lo que supone un gran éxito en la colaboración entre telescopios terrestres y espaciales para la exploración y comprensión de nuestro Universo.

El estudio sugiere que podría haber muchos más de estos esquivos planetas sin estrellas que aún tenemos que descubrir. “Podría haber varios miles de millones de estos planetas gigantes que flotan libremente vagando a su aire por la Vía Láctea sin una estrella anfitriona”, explica Bouy.

Estudiando estos planetas errantes recién descubiertos, la comunidad astronómica puede encontrar pistas sobre cómo se forman estos misteriosos objetos. Dentro de la comunidad científica hay quienes creen que los planetas errantes pueden formarse a partir del colapso de una nube de gas demasiado pequeña como para desencadenar la formación de una estrella, o que podrían haber sido expulsados de su sistema anfitrión. Pero aún no se sabe cuál de estos mecanismos es el más probable.

Para desbloquear el misterio de estos planetas nómadas serán clave los nuevos avances en tecnología. El equipo espera continuar estudiándolos con mayor detalle con el próximo Telescopio Extremadamente Grande (ELT) de ESO, que actualmente está en construcción en el desierto chileno de Atacama y que comenzará sus observaciones a finales de esta década. “Estos objetos son extremadamente débiles y poco se puede hacer para estudiarlos con las instalaciones actuales”, añade Bouy. “El ELT será absolutamente crucial para recopilar más información sobre la mayoría de los planetas errantes que hemos encontrado”.

Imagen: ESO/M. Kornmesser

El primer cometa interestelar puede ser el más prístino jamás encontrado

Nuevas observaciones llevadas a cabo con el Very Large Telescope, del Observatorio Europeo Austral (VLT de ESO), indican que el cometa errante 2I/Borisov, el segundo visitante interestelar detectado recientemente en nuestro Sistema Solar, es uno de los más prístinos jamás observados. Los astrónomos sospechan que lo más probable es que el cometa nunca haya pasado cerca de una estrella, por lo que sería una reliquia inalterada de la nube de gas y polvo en la que se formó.

2I/Borisov fue descubierto por el astrónomo aficionado Gennady Borisov en agosto de 2019 y, unas semanas más tarde, se confirmó que provenía de más allá del Sistema Solar. “2I/Borisov podría representar el primer cometa verdaderamente prístino jamás observado”, afirma Stefano Bagnulo, del Observatorio y Planetario de Armagh, en Irlanda del Norte (Reino Unido), quien dirigió el nuevo estudio publicado hoy en Nature Communications. El equipo cree que el cometa nunca había pasado cerca de ninguna estrella antes de acercarse al Sol en 2019.

2I/Borisov podría representar el primer cometa verdaderamente prístino jamás observado”

Stefano Bagnulo, del Observatorio y Planetario de Armagh, en Irlanda del Norte (Reino Unido)

Bagnulo y sus colegas utilizaron el instrumento FORS2, instalado en el VLT de ESO, ubicado en el norte de Chile, para estudiar a 2I/Borisov en detalle utilizando una técnica llamada polarimetría [1]. Dado que esta técnica se utiliza regularmente para estudiar cometas y otros pequeños cuerpos de nuestro Sistema Solar, esto permitió al equipo comparar al visitante interestelar con nuestros cometas locales.

El equipo descubrió que 2I/Borisov tiene propiedades polarimétricas distintas a las de los cometas del Sistema Solar, con la excepción de Hale-Bopp. El cometa Hale-Bopp suscitó mucho interés por parte del público a finales de la década de 1990 al ser fácilmente visible a simple vista, y también porque era uno de los cometas más prístinos que los astrónomos habían visto. Antes de su última visita, se cree que Hale-Bopp pasó por nuestro Sol sólo una vez y, por lo tanto, apenas se había visto afectado por el viento solar y la radiación. Esto significa que era prístino, es decir, con una composición muy similar a la de la nube de gas y polvo en la que se formaron tanto él como el resto del Sistema Solar hace unos 4.500 millones de años.

Al analizar la polarización junto con el color del cometa para recabar pistas sobre su composición, el equipo concluyó que 2I/Borisov es de hecho aún más prístino que Hale-Bopp. Esto significa que contiene rastros inalterados de la nube de gas y polvo en la que se formó.

“El hecho de que los dos cometas sean tan similares sugiere que el entorno en el que se originó 2I/Borisov no es tan diferente en su composición del entorno del Sistema Solar temprano”, afirma Alberto Cellino, coautor del estudio e investigador del Observatorio Astrofísico de Torino, Instituto Nacional de Astrofísica (INAF) de Italia.

Olivier Hainaut, astrónomo de ESO en Alemania que estudia cometas y otros objetos cercanos a la Tierra -pero que no participó en este nuevo estudio-, está de acuerdo. “El resultado principal —que 2I/Borisov no es como cualquier otro cometa, exceptuando a Hale-Bopp— es muy robusto”, confirma, y agrega que “es muy plausible que se formaran en condiciones muy similares”.

“La llegada de 2I/Borisov desde el espacio interestelar representó la primera oportunidad de estudiar la composición de un cometa proveniente de otro sistema planetario y comprobar si el material de este cometa es, de alguna manera, diferente al de los cometas de nuestro propio sistema”, explica Ludmilla Kolokolova, de la Universidad de Maryland (EE.UU.), que participó en la investigación que se publica en Nature Communications.

Bagnulo espera que la comunidad astronómica tenga otra oportunidad, aún mejor si cabe, de estudiar en detalle un cometa errante antes del final de la década. “La ESA planea lanzar un Interceptor de Cometas en 2029, que tendrá la capacidad de llegar hasta otro objeto interestelar visitante si se descubre uno en una trayectoria adecuada”, afirma, refiriéndose a una próxima misión de la Agencia Espacial Europea.

La historia de un origen escondida en el polvo

Incluso sin una misión espacial, los astrónomos pueden utilizar los numerosos telescopios basados en tierra para obtener información sobre las diferentes propiedades de cometas errantes como 2I/Borisov. “Imagínese lo afortunados que fuimos de que, de forma casual, un cometa de un sistema a años luz de distancia simplemente pasara por nuestro barrio”, dice Bin Yang, astrónomo de ESO en Chile, quien también aprovechó el paso de 2I/Borisov a través de nuestro Sistema Solar para estudiar este misterioso cometa. Los resultados de su equipo se publican en la revista Nature Astronomy.

Yang y su equipo utilizaron datos de ALMA (Atacama Large Millimeter/submillimeter Array), del que ESO es socio, así como del VLT de ESO, para estudiar los granos de polvo de 2I/Borisov para recoger pistas sobre el nacimiento del cometa y las condiciones de su sistema originario.

Descubrieron que la coma de 2I/Borisov — una envoltura de polvo que rodea el cuerpo principal del cometa — contiene piedrecillas compactas, granos de aproximadamente un milímetro de tamaño o más grandes. Además, descubrieron que las cantidades relativas de monóxido de carbono y agua en el cometa cambiaron drásticamente a medida que se acercaba al Sol. El equipo, que también incluye a Olivier Hainaut, afirma que esto indica que el cometa está compuesto por materiales que se formaron en diferentes lugares de su sistema planetario.

Las observaciones de Yang y su equipo sugieren que la materia del sistema planetario en el que se formó 2I/Borisov se mezcló desde la zona cercana a su estrella hasta un área más alejada, tal vez debido a la existencia de planetas gigantes, cuya fuerte gravedad agita la materia presente en el sistema. Los astrónomos creen que un proceso similar pudo tener lugar al principio de la vida de nuestro Sistema Solar.

Aunque 2I/Borisov fue el primer cometa errante en pasar por el Sol, no fue el primer visitante interestelar. El primer objeto interestelar que se observó pasando por nuestro Sistema Solar fue ʻOumuamua, otro objeto estudiado con el VLT de ESO en 2017. Originalmente clasificado como un cometa, ʻOumuamua fue reclasificado más tarde como un asteroide, ya que carecía de coma.

El instrumento GRAVITY, pionero en la obtención de imágenes de exoplanetas

El instrumento GRAVITY, instalado en el interferómetro VLTI (Very Large Telescope Interferometer) de ESO, ha realizado la primera observación directa de un planeta extrasolar mediante interferometría óptica. Este método reveló una atmósfera exoplanetaria compleja, con nubes de hierro y silicatos arremolinándose en una tormenta que abarca todo el planeta. La técnica presenta posibilidades únicas para la caracterización de muchos de los exoplanetas conocidos actualmente.

Este resultado ha sido anunciado hoy en una publicación en la revista Astronomy and Astrophysics por la colaboración GRAVITY [1], en la que presentan observaciones del exoplaneta HR8799e mediante interferometría óptica. El exoplaneta fue descubierto en 2010 en órbita de la joven estrella de secuencia principal HR8799, que se encuentra a unos 129 años luz de la Tierra, en la constelación de Pegaso.

Para obtener estos resultados, que revelan nuevas características de HR8799e, era necesario utilizar un instrumento con muy alta resolución y sensibilidad. GRAVITY puede utilizar las cuatro unidades de telescopio del VLT de ESO para trabajar como si se tratase de un único telescopio de mayor tamaño, usando una técnica conocida como interferometría [2]. Esto crea un súper telescopio — el VLTI — que recoge e interpreta, de forma muy precisa, la luz de la atmósfera de HR8799e y la de su estrella anfitriona.

HR8799e es un ‘superjúpiter’, un tipo de mundo que no se encuentra en nuestro Sistema Solar, más masivo y mucho más joven que cualquier planeta de los que orbitan alrededor del Sol. Con sólo 30 millones años de edad, este exoplaneta bebé es lo suficientemente joven como para ofrecer a los científicos una herramienta para comprender la formación de planetas y sistemas planetarios. El exoplaneta es completamente inhóspito: la energía sobrante tras su formación y un potente efecto invernadero hacen que HR8799e alcance una temperatura hostil de cerca de 1000 °C.

Es la primera vez que se ha utilizado interferometría óptica para revelar detalles de un exoplaneta y la nueva técnica ha proporcionado un espectro exquisitamente detallado de una calidad sin precedentes, diez veces más detallado que observaciones anteriores. Las mediciones del equipo fueron capaces de revelar la composición de la atmósfera de HR8799e, que contiene algunas sorpresas.

“Nuestro análisis mostró que HR8799e tiene una atmósfera que contiene mucho más monóxido de carbono que metano, algo no esperable de la química en equilibrio”, explica el líder del equipo Sylvestre Lacour, investigador CNRS del Observatorio de París-PSL y del Instituto Max Planck de Física Extraterrestre. “Podríamos explicar mejor estos sorprendentes resultados con la presencia de altos vientos verticales dentro de la atmósfera, que impedirían que el monóxido de carbono reaccionase con el hidrógeno para formar metano”.

El equipo descubrió que la atmósfera también contiene nubes de polvo de hierro y silicatos. Esto, combinado con el exceso de monóxido de carbono, sugiere que la atmósfera de HR8799e está inmersa en una enorme y violenta tormenta.

“Nuestras observaciones sugieren que hay una bola de gas iluminado desde el interior, con rayos de luz cálida arremolinándose a través de áreas tormentosas de nubes oscuras”, explica Lacour. “La convección mueve las nubes de partículas de silicato y hierro, que se desagregan y llueven hacia el interior. Esto nos pinta un panorama en el que presenciamos la dinámica atmósfera de un exoplaneta gigante en su nacimiento, sometido a complejos procesos físicos y químicos”.

Este resultado se basa en una cadena de impresionantes descubrimientos llevados a cabo con GRAVITY que han incluido avances tales como la observación, el año pasado, de gas girando al 30% de la velocidad de la luz justo en el límite exterior del horizonte de sucesos del agujero negro masivo que se encuentra en el centro galáctico. También añade una nueva forma de observar exoplanetas al ya extenso arsenal de métodos [3] disponibles para los telescopios e instrumentos de ESO, allanando el camino a muchos más descubrimientos impresionantes [4].

Un murciélago cósmico en pleno vuelo

Escondido en uno de los rincones más oscuros de la constelación de Orión, este murciélago cósmico, a dos mil años luz de distancia, extiende sus nebulosas alas a través del espacio interestelar. A pesar de estar envueltas por nubes opacas de polvo, los brillantes rayos de las estrellas jóvenes de su núcleo iluminan la nebulosa. Demasiado tenue para poder distinguirla a ojo desnudo, en esta imagen, la más detallada hasta la fecha, NGC 1788 revela sus suaves colores al Very Large Telescope de ESO.

El VLT (Very Large Telescope) de ESO, ha captado una etérea nebulosa escondida en los rincones más oscuros de la constelación de Orión (el cazador): NGC 1788, apodada como “el Murciélago Cósmico”. Esta nebulosa de reflexión en forma de murciélago no emite luz, por el contrario, está iluminada por un grupo de jóvenes estrellas que se encuentran en su núcleo, visibles débilmente a través de las nubes de polvo. Los instrumentos científicos han recorrido un largo camino desde que NGC 1788 fue descrita por primera vez y esta imagen, tomada por el VLT, es el retrato más detallado jamás hecho de esta nebulosa.

A pesar de que esta fantasmal nebulosa de Orión parece estar aislada de otros objetos cósmicos, los astrónomos creen que fue formada por potentes vientos estelares procedentes de estrellas masivas más alejadas. Estas corrientes de plasma abrasador provienen de las capas superiores de la atmósfera de una estrella y son lanzadas a velocidades increíbles, dando forma a las nubes que recluyen a las estrellas nacientes del Murciélago Cósmico.

<>El primero en describir NGC 1788 fue el astrónomo germano-británico William Herschel, que la incluyó en un catálogo que más tarde sirvió como base para una de las más importantes colecciones de objetos del cielo profundo, el Nuevo Catálogo General (NGC por sus siglas en inglés) [1]. Antes ya se había captado una bonita imagen de esta pequeña y tenue nebulosa por el telescopio MPG/ESO de 2,2 metros, instalado en el Observatorio La Silla de ESO, pero esta escena recién observada deja a la anterior imagen “mordiendo el polvo”. Congelados en pleno vuelo, los minuciosos detalles de las alas polvorientas de este murciélago cósmico se captaron para celebrar el vigésimo aniversario de uno de los instrumentos más versátiles de ESO, FORS2 (FOcal Reducer and low dispersion Spectrograph 2, reductor focal y espectrógrafo de baja dispersión).

El instrumento FORS2 está instalado en Antu, una de las Unidades de Telescopio del VLT de 8,2 metros, en el Observatorio Paranal, y su capacidad para obtener imágenes de grandes áreas del cielo con un nivel de detalle excepcional lo ha convertido en un codiciado miembro de la flota de instrumentos científicos de última tecnología de ESO. Desde su primera luz, hace 20 años, FORS2 se conoce como “la navaja suiza de los instrumentos”. Este apodo proviene de su excepcionalmente amplio conjunto de funciones [2]. La versatilidad de FORS2 se extiende más allá de usos puramente científicos: su capacidad de captar hermosas imágenes de alta calidad como esta, hace que sea una herramienta particularmente útil para la divulgación.

Esta imagen proviene del programa Joyas cósmicas de ESO, una iniciativa de divulgación que utiliza los telescopios de ESO para producir imágenes de objetos interesantes, enigmáticos o visualmente atractivos, con un fin educativo y divulgativo. El programa hace uso de tiempo de telescopio que no puede utilizarse para observaciones científicas y, con la ayuda de FORS2, produce impresionantes imágenes de algunos de los objetos más sorprendentes del cielo, como esta compleja nebulosa de reflexión. En caso de que los datos obtenidos puedan ser útiles para futuras aplicaciones científicas, estas observaciones se conservan y se ponen a disposición de los astrónomos a través de los archivos científicos de ESO.

Fotografía: ESO

Burbujas de flamantes estrellas

Esta deslumbrante región de formación de nuevas estrellas en la Gran Nube de Magallanes (LMC, por sus siglas en inglés) fue captada por el instrumento MUSE (Multi Unit Spectroscopic Explorer), instalado en el Very Large Telescope de ESO. La relativamente pequeña cantidad de polvo existente en LMC y la precisa visión de MUSE han permitido obtener intrincados detalles de la región en luz visible.

Esta región de la Gran Nube de Magallanes (LMC, por sus siglas en inglés) refulge en llamativos colores en esta imagen captada por el instrumento MUSE (Multi Unit Spectroscopic Explorer, explorador espectroscópico multi unidad), instalado en el VLT (Very Large Telescope) de ESO. La región, denominada LHA 120-N 180B (N180 B para abreviar), es un tipo de nebulosa conocida como una región H II (pronunciado “Hache dos”), y es un fértil criadero de nuevas estrellas.

La Gran Nube de Magallanes es una galaxia satélite de la Vía Láctea, visible principalmente desde el hemisferio sur. Situada a unos 160 000 años luz de la Tierra, podemos considerarla una vecina cercana. Además de estar cerca, vemos el brazo espiral de la Gran Nube de Magallanes de frente, lo que nos permite inspeccionar con facilidad regiones como N180 B.

Las regiones H II son nubes interestelares de hidrógeno ionizado (los núcleos desnudos de átomos de hidrógeno). Estas regiones son guarderías estelares, y las nuevas estrellas masivas recién formadas son las responsables de la ionización del gas circundante, lo cual genera unas vistas espectaculares. La forma distintiva de N180 B se compone de una gigantesca burbuja de hidrógeno ionizado rodeada por cuatro burbujas más pequeñas.

En las profundidades del interior de esta nube, que brilla intensamente, MUSE ha detectado un chorro emitido por una estrella naciente —un objeto estelar joven masivo, con una masa 12 veces mayor que la de nuestro Sol—. El chorro, llamado Herbig–Haro 1177 o HH 1177 para abreviar, se muestra en detalle en esta imagen. Es la primera vez que se ha observado en luz visible un chorro de este tipo fuera de la Vía Láctea, ya que generalmente están oscurecidas por sus entornos polvorientos. Sin embargo, el ambiente relativamente libre de polvo de la Gran Nube de Magallanes permite observar a HH 1177 en longitudes de onda visibles. Con casi 33 años luz de longitud, es uno de los chorros más largos jamás observados.

HH 1177 nos habla de la vida temprana de las estrellas. El chorro está altamente colimado; apenas se dispersa a medida que viaja. Los chorros como este se asocian con los discos de acreción de su estrella y pueden arrojar luz sobre cómo acumulan materia las estrellas nacientes. Equipos de investigación en astronomía han descubierto que tanto las estrellas de alta como las de baja masa lanzan chorros colimados como HH 1177 a través de mecanismos similares, dando a entender que las estrellas masivas pueden formarse de la misma forma que sus contrapartes de baja masa.

Recientemente, MUSE ha mejorado enormemente gracias a la instalación de óptica adaptativa, el modo de campo amplio que vio su primera luz en 2017. La óptica adaptativa es el proceso por el cual los telescopios de ESO compensan los efectos de desenfoque generados por la atmósfera, convirtiendo a estrellas titilantes en imágenes nítidas y de alta resolución. Desde la obtención de estos datos, la incorporación de la modalidad de campo estrecho, ha dado a MUSE una visión casi tan aguda como la del Telescopio Espacial Hubble de NASA/ESA, dándole la posibilidad de explorar el universo con un nivel de detalle nunca antes alcanzado.

Este trabajo de investigación se ha presentado en el artículo científico titulado “An optical parsec-scale jet from a massive young star in the Large Magellanic Cloud”, y aparece en la revista Nature.

This dazzling region of newly-forming stars in the Large Magellanic Cloud (LMC) was captured by the Multi Unit Spectroscopic Explorer instrument on ESO’s Very Large Telescope. The relatively small amount of dust in the LMC and MUSE’s acute vision allowed intricate details of the region to be picked out in visible light.

La fugacidad de un momento en el tiempo

El débil y efímero resplandor que emana de la nebulosa planetaria ESO 577-24 permanece durante muy poco tiempo, alrededor de 10 000 años, un abrir y cerrar de ojos en términos astronómicos. El VLT (Very Large Telescope) de ESO captó esta burbuja de brillante gas ionizado: el último aliento de la estrella moribunda cuyos restos tras la explosión son visibles en el centro de esta imagen. A medida que la capa gaseosa de esta nebulosa planetaria se expanda y crezca, apagándose, irá desapareciendo lentamente hasta que dejemos de verla.

La protagonista de esta imagen es una capa evanescente de gas brillante que se expande en el espacio: la nebulosa planetaria ESO 577-24 [1]. Esta nebulosa planetaria son los restos de una estrella gigante muerta que ha expulsado sus capas externas, dejando atrás una pequeña estrella muy caliente. Este remanente se irá apagando y enfriando gradualmente y acabará sus días como el mero fantasma de lo que una vez fue una inmensa estrella gigante roja.

Las gigantes rojas son estrellas en las etapas finales de sus vidas que han agotado el combustible de hidrógeno en sus núcleos y han comenzado a contraerse bajo el asfixiante puño de la fuerza de la gravedad. A medida que una gigante roja se contrae, la inmensa presión reaviva el núcleo de la estrella, lanzando hacia el vacío del exterior sus capas más externas en forma de potentes vientos estelares. El núcleo incandescente de la estrella moribunda emite una radiación ultravioleta lo suficientemente intensa como para ionizar estas capas expulsadas y hacer que brillen. El resultado es lo que vemos como una nebulosa planetaria: el fugaz testimonio final de una estrella anciana al final de su vida [2].

Esta deslumbrante nebulosa planetaria fue descubierta dentro del sondeo National Geographic Society  — Palomar Observatory Sky Survey en la década de 1950 y fue registrada en el Catálogo Abell de nebulosas planetarias en 1966 [3]. A unos 1400 años luz de la Tierra, el resplandor fantasmal de ESO 577-24 es visible sólo a través de un telescopio potente. A medida que la estrella enana se enfríe, la nebulosa continuará expandiéndose en el espacio, desapareciendo lentamente hasta que dejemos de verla.

Esta imagen de ESO 577-24 fue creada como parte del programa Joyas Cósmicas de ESO, una iniciativa que produce imágenes de objetos interesantes, enigmáticos o visualmente atractivos utilizando telescopios ESO, con un fin educativo y divulgativo. El programa hace uso de tiempo de telescopio que no puede utilizarse para observaciones científicas. Aun así, los datos obtenidos se ponen a disposición de los astrónomos a través de los archivos científicos de ESO.

Las observaciones más detalladas de material orbitando cerca de un agujero negro

El instrumento GRAVITY de ESO confirma el estado del agujero negro que está en el centro de la Vía Láctea.

El instrumento GRAVITY de ESO instalado en el interferómetro del Very Large Telescope (VLT) lo han usado científicos de un consorcio de instituciones europeas, incluyendo a ESO, para observar destellos de radiación infrarroja provenientes del disco de acreción alrededor de Sagitario A*, el objeto masivo en el corazón de la Vía Láctea. Los destellos observados entregan la confirmación esperada por tanto tiempo de que el objeto en el centro de nuestra galaxia es, como se ha asumido por largo tiempo, un agujero negro supermasivo. Los destellos se originan del material que orbita muy cerca del horizonte de sucesos del agujero negro, haciendo de éstas las observaciones más detalladas que existen de material orbitando tan cerca de un agujero negro.

Mientras parte del material en el disco de acreción — el cinturón de gas que orbita Sagitario A* a velocidades relativistas — puede orbitar el agujero negro de forma segura, cualquier cosa que se acerque demasiado está destinada a ser atraída más allá del horizonte de sucesos. El punto más cercano a un agujero negro que puede orbitar ese material sin ser inevitablemente atraído hacia dentro por la inmensa masa se conoce como la órbita estable más cercana, y es desde aquí que se originan los destellos observados.

“Es alucinante ver efectivamente material orbitando un agujero negro masivo a un 30% de la velocidad de la luz (…) La gran sensibilidad de GRAVITY nos ha permitido observar los procesos de acreción en tiempo real con un nivel de detalle sin precedentes” Oliver Pfuhl, Instituto Max Planck de Física Extraterrestre (MPE)

Estas mediciones sólo fueron posibles gracias a la colaboración internacional y a instrumentos dotados de la tecnología más avanzada. El instrumento GRAVITY que hizo posible este trabajo combina la luz de cuatro telescopios del VLT de ESO para crear un súper telescopio virtual de 130 metros de diámetro, y ya ha sido usado para explorar la naturaleza de Sagitario A*.
A principios de este año, GRAVITY y SINFONI, otro instrumento del VLT, le permitieron al mismo equipo medir con exactitud el sobrevuelo cercano de la estrella S2 a medida que pasaba por el intenso campo gravitatorio que hay cerca de Sagitario A*, y por primera vez esto reveló los efectos previstos por la relatividad general de Einstein en un ambiente así de extremo. Durante el sobrevuelo cercano de S2, se observó también una fuerte emisión infrarroja.

“Monitoreamos de cerca S2, y por supuesto siempre supervisamos Sagitario A*”, explicó Pfuhl. “Durante nuestras observaciones, tuvimos la suerte de apreciar tres destellos brillantes alrededor del agujero negro, ¡lo que fue una afortunada coincidencia!” Oliver Pfuhl, Instituto Max Planck de Física Extraterrestre (MPE)

Esta emisión, proveniente de electrones altamente energéticos muy cercanos al agujero negro, fue observada como tres prominentes destellos brillantes, y coincide exactamente con las predicciones teóricas sobre zonas calientes orbitando cerca de un agujero negro con una masa de cuatro millones de veces la del Sol [4]. Se cree que los destellos se originan a partir de interacciones magnéticas en el gas muy caliente que orbita muy cerca de Sagitario A*.

“Este siempre fue uno de nuestros proyectos soñados, pero nunca pensamos que pudiese hacerse realidad tan pronto”. Refiriéndose a la antigua suposición de que Sagitario A* es un agujero negro supermasivo, Genzel concluyó que “el resultado es una rotunda confirmación del paradigma sobre el agujero negro masivo” Reinhard Genzel, Instituto Max Planck de Física Extraterrestre (MPE)

Crédito imagen: ESO/Gravity Consortium/L. Calçada

Se detecta el mayor proto-supercúmulo de galaxias

Un equipo de astrónomos liderado por Olga Cucciati del Instituto Nacional de Astrofísica de Bolonia (INAF), utilizó el instrumento VIMOS del Very Large Telescope de ESO (VLT) para identificar un gigantesco proto- supercúmulo de galaxias formándose en el universo temprano, tan solo 2300 millones de años tras el Big Bang. La estructura, que los investigadores denominaron Hyperion, es la más masiva y de mayor tamaño que se ha encontrado en una etapa de formación del universo tan temprana. Se estima que la masa del proto-supercúmulo es más de mil billones de veces la masa del Sol. Esta masa colosal es similar a la de estructuras de mayor envergadura observadas en el universo actualmente, pero el hallazgo de un objeto tan masivo en el universo temprano sorprendió a los astrónomos.

“Es la primera vez que se ha identificado una estructura de tan gran tamaño a tan alto corrimiento al rojo, sólo 2000 millones de años después del Bing Bang”. “Normalmente, este tipo de estructuras son conocidas a menor corrimiento al rojo, vale decir, cuando el universo ha tenido más tiempo para evolucionar y construir objetos tan enormes. Nos sorprendió ver algo tan evolucionado cuando el universo era relativamente joven!” Olga Cucciati, investigadora principal

El equipo encontró que Hyperion tiene una estructura sumamente compleja y contiene, al menos, 7 regiones de alta densidad conectadas por filamentos de galaxias, y su tamaño es comparable al de otros supercúmulos cercanos, si bien su estructura es muy distinta.

“Los supercúmulos más cercanos a la Tierra tienden a tener una distribución de masa más concentrada con claras características estructurales (…) Pero en Hyperion, la masa está distribuida de manera más uniforme en una serie de manchas conectadas, pobladas por conglomerados de galaxias dispersas.” Brian Lemaux, astrónomo de la Universidad de California, Davis y LAM

Este contraste probablemente se debe a que los supercúmulos cercanos han tenido  miles de millones de años en los cuales la gravedad ha aglutinado masa formando regiones más densas, un proceso que ha actuado mucho menos tiempo en el caso del joven Hyperion.

“Comprender a Hyperion y cómo se compara con otras estructuras similares recientes puede brindar información sobre cómo se desarrolló el Universo en el pasado y cómo evolucionará en el futuro, y nos da la oportunidad de desafiar algunos modelos de formación de supercúmulos (…) El descubrimiento de este titán cósmico ayuda a develar la historia de estas mega-estructuras.” Olga Cucciati, investigadora principal

Crédito fotografía: ESO/L. Calçada & Olga Cucciati et al.